Torsion in K0 of unit-regular rings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K0 of Purely Infinite Simple Regular Rings

We extend the notion of a purely infinite simple C*-algebra to the context of unital rings, and we study its basic properties, specially those related to K-Theory. For instance, if R is a purely infinite simple ring, then K0(R) + = K0(R), the monoid of isomorphism classes of finitely generated projective R-modules is isomorphic to the monoid obtained from K0(R) by adjoining a new zero element, ...

متن کامل

Commuting $pi$-regular rings

R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

K0 of Invariant Rings and Nonabelian H 1

We give a description of the kernel of the induction map K0(R) → K0(S), where S is a commutative ring and R = S G is the ring of invariants of the action of a finite group G on S. The description is in terms of H(G,GL(S)).

متن کامل

The unit sum number of Baer rings

In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.

متن کامل

On torsion-free periodic rings

There is a great deal of literature on periodic rings, respectively, torsion-free rings (especially of rank two). The aim of this paper is to provide a link between these two topics. All groups considered here are Abelian, with addition as the group operation. By order of an element we always mean the additive order of this element. All rings are associative but not necessarily with identity. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1995

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500019118